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Deliverable description  
This	 deliverable	 consists	 in	 a	 report	 on	master	 equation	 approach	 for	 describing	 the	
dynamics	of	rare	earth	ions	coupled	to	mechanical	vibrations	in	relation	with	MS4.	
	
	
Introduction and context 
In	a	previous	article	 [1]	we	demonstrated	 that	 structured	hole	burning	 can	prepare	 a	
cantilever	 such	 that	 light	 transmitted	 through	 the	 spectral	hole	 acquires	 a	phase	 shift	
proportional	to	the	bending	of	the	cantilever.	We	discussed	the	ability	to	detect	thermal	
and	 vacuum	 Brownian	 motion	 of	 the	 cantilever	 via	 the	 noise	 spectrum	 of	 the	
transmitted	radiation.		

The	next	 steps	 consist	of	determining	how	 to	exploit	 the	 coupling	between	 rare-earth	
ions	and	resonator	in	order	to	take	advantage	of	the	quantum	nature	of	the	resonator,	
either	for	creating	non-classical	states	(D3.7)	or	use	for	sensing	purposes	(D3.9).	

In	this	context,	we	wish	to	study	the	measurement	back	action	on	the	quantum	state	of	
the	cantilever	due	to	continuous	homodyne	detection.	The	 information	obtained	about	
the	 cantilever	 motion	 reduces	 its	 uncertainty	 and	 is	 fully	 equivalent	 to	 a	 cooling	
mechanism:	While	we	do	not	on	average	extract	energy	from	the	oscillator,	we	obtain	a	
narrow	 probability	 distribution	 around	 a	 random	 (but	 known)	 displacement	 in	 the	
position-momentum	 phase	 space.	 This	 displacement	 constitutes	 a	 reference	 frame	 in	
which	the	energy	(and	temperature)	is	reduced,	and	if	needed,	it	can	be	either	removed	
by	application	of	a	force	on	the	cantilever,	or	its	known	value	can	be	merely	employed	in	
applications	 such	 as	 motion	 and	 force	 sensing.	 We	 have	 established	 a	 Gaussian	
covariance	 matrix	 description	 of	 the	 dynamics	 which	 is	 exact	 as	 the	 interactions,	
damping	and	continuous	probing	maintain	the	Gaussian	state	property.	

	
Theoretical Approach 
A	transparent	cantilever	is	probed	by	a	coherent	laser	beam	of	light,	which	undergoes	a	
phase	shift	DF=	k	xm,	where	xm	denotes	the	effective	coordinate	of	one	of	the	vibrational	
modes	of	the	mechanical	oscillator,	and	k	is	a	constant.	In	the	following	we	assume	that	
xm	is	dimensionless,	i.e.,	the	position	coordinate	is	given	in	units	of	its	rms	uncertainty	in	
the	ground	state	x0.	We	will	use	this	phase	shift	 in	order	to	monitor	 the	motion	of	 the	
resonator.	
	
In	ref.	[1],	we	identified	an	oscillator	mode	at	w=890	kHz	with	effective	mass	of	m=1.1	
10-11	kg,	causing	a	phase	shift	of	0.2	mrad	for	a	bending	of	0.4	pm,	equivalent	to	a	phase	
shift	of	5.7	µrad	 for	a	bending	of	1.3	 fm	(the	oscillator	ground	state	width)	and	k=	5.7	
µrad.	
	
The	details	of	 the	calculations	can	be	 found	 in	the	appendix,	here	we	will	 focus	on	the	
main	results.	
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Equations for the co-variance matrix 
	
The	Gaussian	covariance	matrix	solves	a	non-linear,	so-called,	Riccati	equation,	and	we	
obtain	 for	 the	 oscillator	 part	 of	 the	 covariance	 matrix	 the	 following	 deterministic	
component	equations:	
	
	

 
 
where		

 
	
represents	the	oscillator	position	and	momentum	variances	and	co-variances.	We	have	
also	defined	k2=k2F	with	F	the	photon	flux,	and	h	is	the	photon	detection	efficiency,	and	
g	is	the	mechanical	decay	rate.	Finally,	n	represents	the	temperature	of	the	thermal	bath	
surrounding	 the	 system,	 driving	 the	 oscillator	 towards	 a	 thermal	 state	 with	 mean	
excitation	n.	
	
Interpretation of equations 
	
By	solving	the	above	equations,	we	obtain	a11	which	corresponds	to	twice	the	position	
variance	 of	 the	 resonator.	 By	 continuously	 probing	 the	 resonator	 by	 monitoring	 the	
phase	of	a	transmitted	laser	beam,	the	figure	shows	that	it	is	possible	to	reach	a	value	for	
a11	close	 to	 the	variance	 corresponding	 to	 the	zero-point	motion	of	 the	 resonator	 in	a	
few	 microseconds	 (see	 figure	 1)	 which	 corresponds	 to	 possessing	 the	 maximum	
information	of	the	resonator	position.	
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Figure	1	Twice	the	position	variance	for	a	cantilever	subject	to	optical	probing.	The	cantilever	parameters	are	given	in	
the	beginning	of	the	report,	and	we	assume	k2	=	0.2	MHz,	h	=	1,	bath	excitation	n	=	100,	and	bath	coupling	g	=	50	Hz.	The	
time	is	in	micro-seconds.	

	
Note	that	the	unobserved	oscillator	momentum	undergoes	an	increasing	variance	due	to	
the	interaction	with	the	probe	field	(first	term	in	the	rate	equation	for	a22)	-	this	diffusive	
heating	is	the	back	action	on	the	mechanical	oscillator	of	the	photon	number	fluctuation	
in	the	incident	state.		
	
From	the	above	equations,	it	is	also	possible	to	simulate	the	position	of	the	resonator	as	
a	function	of	time	as	shown	in	figure	2.	
	
	

	
	
Figure	2	Simulated	evolution	of	the	position	of	the	cantilever.	The	system	acquires	a	well-defined	phase	and	amplitude,	
depending	on	the	early	measurement	record.	The	width	of	the	coloured	area	is	obtained	from	a11	in	the	previous	figure	
(fig	1)	and	the	parameters	used	in	the	simulation	are	the	same.	Time	is	in	units	of	µs.	
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Conclusion 
We	have	in	the	framework	of	the	NanOQTech	project	derived	a	Gaussian	state	formalism	
that	 accounts	 for	 the	 evolution	 of	 a	 mechanical	 oscillator	 subject	 to	 continuous	
homodyne	probing.	The	measurement	outcome	is	stochastic,	and	the	measurement	back	
action	entails	a	displacement	of	the	oscillator,	which	one	must	know	to	benefit	from	the	
significantly	reduced	variance	of	the	inferred	position	and	momentum	of	the	cantilever.	
The	increased	purity	of	the	quantum	state	accompanies	a	reduced	entropy,	and	we	shall	
refer	 to	 the	 process	 as	 measurement	 induced	 cooling,	 as	 the	 residual	 energy	 of	 the	
system	is	mainly	due	to	a	precisely	known	oscillatory	motion	in	phase	space	–	a	motion	
that	 can	 be	 arrested	 by	 application	 of	 a	 force,	 and	 that	 does	 not	 deteriorate	 the	
application	of	the	cantilever	for	force	or	inertial	sensing,	as	long	as	it	is	known.	
	
In	succession	to	the	work	reported	here,	we	plan	to	
	

• extract	analytical	expression	for	the	variances	as	well	as	values	in	limiting	and	
optimal	cases,	

	
• develop	and	investigate	the	performance	of	feedback	and	sensing	protocols,	

	
• make	a	separate	study	of	the	so-called	retrodicted	state	[2]	of	the	system:	What	

do	we	know	at	time	T	about	the	oscillator’s	position	at	the	earlier	time	t,	due	to	
the	measurements	performed	both	until	t	and	after	t,	and	how	can	this	benefit	for	
motional	sensing?	

	
	
Bibliography 
[1]	K.	Mølmer,	Y.	Le	Coq	and	S.	Seidelin,	Dispersive	coupling	between	light	and	a	rare-
earth	ion	doped	mechanical	resonator,	Physical	Review	A	94,	053804	(2016).	
	
[2]	Søren	Gammelmark,	Brian	Julsgaard,	and	Klaus	Mølmer,	Past	Quantum	States	of	a	
Monitored	System,	Phys.	Rev.	Lett.	111,	160401	(2013).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Appendix: Details on calculations concerning

the conditional master equation for the motion

of a continuously monitored cantilever

The physical system

A cantilever is probed by a coherent laser beam of light, which undergoes a
phase shift �� = kx

m

, where x
m

denotes the effective coordinate of one of
the vibrational modes of the mechanical oscillator, and k is a constant. In the
following we assume that x

m

is dimensionless, i.e., the position coordinate is
given in units of its rms uncertainty in the ground state x0. In [1], we identified
a ! ⇠ 890 kHz mode for an oscillator mode with effective mass m = 1.1 · 10�11

kg, causing a phase shift of 0.2 mrad for a bending of 0.4 pm, equivalent to a
phase shift 5.7µrad for a bending of x0 = 1.3 fm, the oscillator ground state
width (k = 5.7µrad).

The coherent beam of light can be thought of as a product state of segments
of duration ⌧ , each containing a coherent state with average photon number
n = �⌧ . A Fock state |ni undergoes a quantum phase shift, |ni ! e�i��n|ni.
We shall assume that the field is in a coherent state with real argument ↵ =p
n =

p
�⌧ , and write â =: ↵+ �â, such that

n̂ = â†â = (↵+ �â†)(↵+ �â)

' ↵2 + ↵(â� ↵) + ↵(â† � ↵) = ↵(â+ â†)� ↵2

= ↵x
ph

� ↵2. (1)

This expression allows us to approximate the phase factor e�i��n by e�i⌧xphxm ,
where 2

⌧

⌘ 2⌧ ⌘ k2�⌧ .
Note that the exponential operator form reflects the unitary evolution of a

field and a mechanical oscillator, with a coupling Hamiltonian H = 
⌧

x
ph

x
m

/⌧ .

Evolution of the system; formalism

The evolution by the interaction Hamiltonian is given in both classical and
quantum mechanics by a linear mapping of the position and momentum observ-
ables. In addition the oscillator Hamiltonian causes a phase space rotation at
frequency ! of the oscillator coordinates, and for a short time interval ⌧ , we get
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We now introduce the covariance matrix �
ij

= 2Re(h(q̂
i

�q
i

)(q̂
j

�q
j

)i, where
q̂
i

denotes the four quadrature observables and q
i

their expectation values. The
state before passage of a segment of the coherent light beam is described by

� =

✓
A C
CT B

◆
(3)

where
B =

✓
1 0
0 1

◆
, C =

✓
0 0
0 0

◆
(4)

represent the vacuum variances of the coherent state and its lack of prior cor-
relation with the oscillator, and

A =

✓
a11 a12
a21 a22

◆
, (5)

represents the oscillator position and momentum variances and covariances.
Due to the interaction of the two systems, they become correlated as repre-

sented by the transformation
� ! S�ST (6)

where S denotes the 4x4 matrix in (2).
Note that each new segment of coherent light enters with the same B ma-

trices and C matrices, while the mechanical resonator is described by the A,
resulting from the previous interaction. If we were to just let the light escape
to infinity, the oscillator would thus be described by the upper left block matrix
A, which will be time dependent due to the continuous interaction with new
coherent state segments of light.

We include the thermalization of the oscillator at (energy) rate � to its
environment, by the rate equations, da

ii

/dt = �(2n+ 1)� �a
ii

for i = 1, 2, and
da

ij

/dt = ��a
ij

for i 6= j. In the absence of other terms this would lead to a
steady state of a11 = a22 = 2V ar(x

m

) = 2V ar(p
m

) = 2n + 1, representing the
familiar average 1

2 hx
2
m

+ p2
m

i = (n+ 1
2 ) of the thermalized oscillator.

Now, in addition, we want to describe the effect of the homodyne measure-
ment of the p

ph

quadrature of the field segment after the interaction with the
cantilever (containing the information about x

m

, due to the phase rotation of
the incident coherent field). We skip the technical and lengthy derivation here,
but note that each segment that just leaves the cantilever and the cantilever
itself are described by a joint Gaussian phase space distribution with a covari-
ance matrix of the form (3), and a vector of the mean values of the four phase
space variables in Eq.(2). The homodyne measurement of the field quadrature
p
ph

variable is predicted to follow a Gaussian probability distribution, but when
the measurement reveals its value, we must evaluate the joint probability dis-
tribution of the field and cantilever at this observed value, and what remains is
a (conditional) Gaussian phase space probability distribution for the cantilever
state. This is nothing but a continuous version of Borns rule and the projection
postulate acting on a composite system (which, in turn, is an implementation
of Bayes’ rule of conditional probabilities).



Evolution of the system; explicit equations and

steady state

The Gaussian covariance matrix solves a non-linear, so-called, Riccati equation
(the quadratic term a11 is not an error). Putting all terms together, assuming
one segment after each other, and performing the derivative, dx/dt = (x(t +
⌧)�x(t))/⌧ , we get for the oscillator part of the covariance matrix the following
deterministic component equations:

da11
dt

= �⌘2a211 + !(a21 + a12)� �(a11 � (2n+ 1))

da12
dt

= �⌘2a11a12 � !(a11 � a22)� �a12

da21
dt

= �⌘2a11a21 � !(a11 � a22)� �a21

da22
dt

= 2 � ⌘2a12a21 � !(a21 + a12)� �(a22 � (2n+ 1)).

(7)

Note that the unobserved p
m

undergoes an increasing variance due to the in-
teraction with the probe field - this diffusive heating is the back action on the
mechanical oscillator of the spread in x

ph

of the incident state. If there was
no free rotation (at !), the effective anti-squeezing of p

m

would be necessary
to accompany the squeezing of x

m

. Due to the rotation, however, we find a
constant cooling of one and heating of the other degree of freedom and a con-
stant mixing of the two, leading, ideally, to cooling of both. The parameter ⌘
denotes the propagation and detection efficiency (intensity), and putting ⌘ = 0
corresponds to detection, but still the p

m

is heating up due to the interaction
and entanglement with the probe field.

Together with the determistic change of the covariance matrix, the mean
values of x

m

and p
m

develop non-zero mean values due to the measurements.
Let dW denote the difference between the measured value and the expected
mean value; dW is stochastic with variance dW 2 = dt, corresponding to detector
shot noise, and its explicit variation leads to the update equation for the mean
values:

hx
m

i ! hx
m

i+p
⌘a11dW

hp
m

i ! hp
m

i+p
⌘a21dW (8)

We can solve the equations with real experimental or simulated data, and in
this way we can present the evolution of the motional state of the cantilever.

An example is given in Fig. 1 in the report showing the rapid decrease of
the covariance matrix elements a11 (twice the variance of x

m

) due to probing
and Fig. 2 shows the conditional variation of the position quadrature (mean
value and error interval).
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light and a rare-earth ion doped mechanical resonator, Phys. Rev. A 94, 053804
(2016).


